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Abstract

In this paper, we study the decentralized optimization problem of minimizing the
strongly convex objective that is the sum of smooth convex functions stored across
a network with m local agents. We propose an efficient algorithm for finding an e-
suboptimal solution within at most O((m++/m« ) log(1/¢)) local first-order ora-
cle calls and O(1/k/alog(1/€)) communication rounds, where & is the condition
number of the objective and « is the spectral gap of the gossip matrix. Both of our
local first-order oracle complexity and communication complexity nearly match
the corresponding lower bounds. The proposed algorithm allows only few of the
agents compute their local gradients during one iteration, which significantly re-
duces the total computational cost. In contrast, the existing decentralized convex
optimization algorithms require all of the agents computes their local gradients
during every iteration, which leads to at least Q(m+/k1og(1/€)) local first-order
oracle complexity totally.

1 Introduction

In this paper, we focus on solving the decentralized optimization problem

min f(z) £ % > fil) (1.1)

zERY

on an undirected connected network with m agents, where the objective function f : R 5 R
is pu-strongly-convex, and the local function f; : R¢ — R on the i-th agent is L-smooth and convex.
Decentralized algorithms desire all of the m agents to solve the optimization problem cooperatively
and each of the agents is only allowed to communicate with its neighbors.

First-order algorithms for decentralized convex optimization have been extensively studied in re-
cent years [L1} [13} [15} [16} 194521} 251 27, 29, 31}, 32} 37H39]. Scaman et al. [29] showed that
achieving an e-suboptimal solution of problem requires at least Q(+/x log(1/€)) gradient steps
and Q(1/k/alog(1/€)) communication steps, where x is the condition number of the objective
and « is the spectral gap of the gossip matrix. They attempted to match these lower bounds by
proposing multi-step dual accelerated (MSDA) method. However, the iteration of MSDA relies on
accessing the dual gradients of local functions, which may be intractable. We are more interested in
dual-free methods [7, (L1} 12, 14} 32} [37] that only require the local gradient calls during the itera-
tions. In particular, Kovalev et al. [[L1] applied the idea of primal dual framework [3} 4} |6, [18]] and
Chebyshev acceleration [[17,128] to design optimal proximal alternating predictor-corrector (OPAPC)
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Table 1: We summarize local first-order oracle complexity and communication complexity of pro-
posed KNOT and previous work. We use O(-) and €2(-) to hide logarithmic factors of x and m.

Methods # Local First-Order Oracle # Communication
APM-C [15] O(my/klog(1/e)) O(y/r/alog?(1/e))
OPAPC [[11] O(my/klog(1/e)) O(y/r/alog(1/e))

Acc-GT+CA [13] O(my/klog(1/e)) O(y/x/alog(1/e))
KNOT (Theorem O((m + ymr)log(1/e))  O(y\/r/alog(1/e))
Lower Bounds [29.34] ~ Q(m + /mrlog(1/e))  Q(y/k/alog(1/e))

methods, which avoid dual gradient computation and the later one matches both of the lower bounds
for gradient steps and communication steps provided by Scaman et al. [29]. Li and Lin [13] es-
tablished the algorithm by incorporating gradient tracking [[16} 21} [25 [311 135, 136] and Chebyshev
acceleration [[17,28]] into Nesterov’s acceleration [22] (Acc-GT+CA), which achieves the same com-
putation and communication complexities.

We notice that the existing statements on optimality of gradient steps for above first-order decen-
tralized algorithms can be refined [7, (11} [14) 137]. Concretely, the existing “optimal” first-order
algorithms for decentralized convex optimization require all of the agents computing their local
gradient during every iteration. Hence, each “gradient step” of these algorithm contains m local
gradient calls, resulting at least Q(m+/xlog(1/€)) local gradient complexity in total In fact, the
atomic operation of the first-order decentralized algorithm is computing the gradient of one local
function, which implies allowing only few of the agents computing their local gradients during one
iteration potentially makes the algorithm be more computation efficient. In practice, decentralized
optimization are usually applied to networks with limited computational resources (e.g. mobile de-
vices [33]], wireless sensors [26] and smart home appliances [9]), which also encourages us to design
decentralized algorithms with less local computational cost to reduce the energy consumption.

We consider the problem of minimizing objective function in problem (I.T) on a single machine. It
is well known that accelerated stochastic gradient methods [1} 10} [24] can achieve an e-suboptimal
solution of such finite-sum problem within O((m++/m#« ) log(1/¢)) individual component gradient
calls. Since the objective of decentralized optimization problem also has the finite-sum structure, it
implies the known local gradient oracle complexity O(m+/klog(1/€)) of existing first-order algo-
rithms [[7, 11} [14} 32} 137]] maybe not optimal. This naturally leads to the following question

Can we design a decentralized first-order algorithm with less local gradient calls?

In this paper, we give a positive answer to above question by proposing Katyusha-type Near-Optimal
decenTralized algorithm (KNOT). Our method allows the agents to skip the step of computing lo-
cal gradient during most of the iterations, which significantly improves the total computational ef-
ficiency. We prove that KNOT can achieve an e-suboptimal solution of problem (I.I)) within at
most O((m + /mr ) log(1/€)) local gradient oracle complexity and O(+/k/c log(1/€)) commu-
nication complexity, which nearly matches the corresponding lower bounds [29] [34]. We compare
the theoretical results of proposed KNOT and previous methods in Table[I]

Paper Organization In section[2] we introduce the notations and settings throughout this paper.
In section [3] we propose a new decentralized optimization algorithm and provide its convergence
analysis. In sectiond] we give a discussion for the optimality of proposed algorithm. In section [5
we provide numerical experiments to validate our theory. We conclude our work in section [6] All
proofs are deferred to appendix.

'Recall that finding an e-suboptimal solution of smooth and strongly convex function on single machine
requires at least Q(+/k log(1/¢)) gradient calls in terms of the objective function [22].
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Algorithm 1 AccGossip (vo, K)

—1
I vii=v°

R SV Y 114)
T viam
cfork=0,..., K

v = (14 B)WvF — pvEl
end for
: Output: v

[\

2 Preliminaries

We use || - || to present the Frobenius norm of the matrix and the Euclidean norm of the vector. We
introduce the aggregated notations

1
x = [xg," - ,xm]T, VF(x)=[Vfi(z1), - ,me(xm)]T and T = ElTx,

where z; is the local variable on the i-th agent and V f;(z;) is the corresponding local gradient.
We impose the following assumptions on the decentralized optimization problem (T.T).

Assumption 1. We assume each local function f; : R* — R is L-smooth, i.e., there exists constant
L > 0 such that

fily) — @) < (Vi) y —a) + 5 lly — P
forany x,y € R%

Assumption 2. We assume each local function f; : R? — R is convex, i.e., we have

fily) = fi(z) =2 (Vfi(z),y — x)
for any z,y € R%.

Assumption 3. We assume the global function f : R* — R is u-strongly convex, i.e., there exists
constant p > 0 such that

) = f@) = (V().y =) + Slly — |
forany x,y € R%

Assumptionimplies f(-) is L-smooth and we define x 2 L/y as its condition number.
The strong convexity means the objective f(-) has unique minimizer 2*. We say & = [1, ..., 2] |
is an e-suboptimal solution of the decentralized optimization problem (1.1} if f(&;) — f(z*) < €

holds forany ¢ = 1,...,m.

We let W € R™*™ be the gossip matrix associated with the network of m agents and it satisfies the
following assumption.

Assumption 4. We assume the gossip matrix W' is symmetric and W; ; # 0 if and only if the i-th
and the j-th agents are connected in the network. We also assume W satisfies0 < W X I, W1 =1
and null(I — W) = span(1).

We define the spectral gap of the gossip matrix as @ = 1 — Ao (W) which describes the connectivity
of the network, where \y(W) is the second largest eigenvalue of W. Each communication step
can be performed by a multiplication of W by an aggregated variable. It is popular to reduce the
consensus error by Chebyshev acceleration [17, 28]. We present the details in Algorithm [T]and its
has the following property.
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Proposition 1. Let v° and v? be the input and output ofAlgorithm respectively, and v = %1Tv0.
Then we have v = 21Tx® and ||v! — 10| < (1 — /1 — Xa(W) )K |[v0 - 13|.

3 The Algorithm and Main Results

In this section, we introduce the insight and the design of Katyusha-type Near-Optimal decenTral-
ized algorithm (KNOT). We also provide complexity analysis to show the advantage of KNOT
formally.

3.1 Motivation

Before studying the decentralized optimization, we first give a brief review of the algorithms for
solving the finite-sum optimization problem

1 m
— 3.1
win f@0) £ 50 fi@ 3D

on a single machine, where the objective function f : RY — R is p-strongly-convex, and each
individual component function fz : R? — R is L-smooth and convex. It is well known that accel-
erated gradient descent (AGD) [22]] achieves the optimal full gradient complexity O(+/klog(1/€))
for solving problem (3.1)), while each of its iteration requires m incremental first-order oracle (IFO)
calls. A popular way to reduce the iteration is stochastic gradient descent (SGD), while it only con-
verges sublinearly. Variance reduction [[1, 1518} [10. 23124, 30] is a widely used technique to improve
the convergence rate of SGD, e.g. stochastic variance reduced gradient (SVRG) method iterate with
gradient estimator

= Vi) + 3 3 (VHE) - V@), (G2
JESH
where @ is a snapshot point that is updated infrequently and S; is a random subset of {1,...,m}

with candidate b. Katyusha method [[]] iterates with variance reduced estimator 9* by involving the
negative momentum and achieves the near optimal IFO complexity of O((m + /m« )log(1/¢)),
which is better than O(m+/k log(1/¢)) of AGD.

Note that the objective function in decentralized optimization problem (1.1)) also has the finite-sum
structure, which motivates us to improve the computational efficiency by 1ntr0duc1ng some gradient
estimator like variance reduced estimator shown in (3.2).

3.2 The Algorithm

We propose Katyusha-type Near-Optimal decenTralized algorithm (KNOT) in Algorithm [2] The
gradient tracking steps (line 10 and 21) indicates the algorithm performs the following update

=02+ 600" + (1 — 61 —62)7"

=0 =a"+ %;% (Vfilzi) = V fi(wy))
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Algorithm 2 Katyusha-type Near-Optimal decenTralized algorithm (KNOT)

1: Input: initial point @w°, probabilities p and g, number of consensus steps K and K,
total iteration numbers 7', parameters L, p, 61 and 05

2:0y9=2"=wl=1w, vii=s1=0, g=u’=VF(w
3: n=1/(1361), 0 = u/L

4: fort=0,...,T

5. x' = AccGossip(f1zt + Oow! + (1 — 01 — 62)y', K)

6. parallelfori=1,...,mdo

7: draw &' ~ Bernoulli(q)

B =l S (VAGD - VD)

9:  end parallel for
10 s' = AccGossip (s’ ' + v! — vI7L K)

1
11:  z'*t! = AccGossip (1 g (naxt +z' — %st) ,K)

12:  y"! = AccGossip (x' + 6, (2! — 2), K)
13:  draw ¢**! ~ Bernoulli(p)
14: parallelfori=1,...,m do
toafcttl =1
15: G+ = {zjf y gtﬂ P
16:  end parallel for
17: w't! = AccGossip (W', K)

18: parallelfori =1,...,mdo
19: gitt = Vﬂ»(wf“), if ¢ =1
[ gf7 if Ct-}-l =0

20:  end parallel for

21:  u'*t! = AccGossip (ut + gttt — gt K)
22: end for

23: Output: X, = AccGossip(xr, Kout)-

on the mean vectors, which is similar to mini-batch version of Loopless Katyusha (L-Katyusha) [}
10, [24]. The consensus error of the variables can be bounded by the property (Proposition [T)) of the
subroutine AccGossip (Algorithm [T), which encourages KNOT achieves the similar convergence
result to Katyusha.

The computational efficiency of KNOT mainly comes from the local gradient estimator

ol —ul 4 5; (Vi) — Vfiut)) |

where u! is an estimator of the local gradient at the snapshot point w! and &! is a random variable
drawn from Bernoulli distribution with parameter g. If we set ¢ = b/m for some b € {1,...,m}, the

mean of local gradient estimators v, ..., vl can be rewritten as
1
-t —t t t
v =a"+ 3 Z (Vfi(xz') - vfi(wi)) )
i€t
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where Z = {i : ! = 1} and @' can be regarded as an estimator of the global gradient at point w".
This implies the computations of local gradient V f;(z}) and V f;(w!) are performed on |Z?| agents
with E [|It \] = b. Hence, the mean vector & plays a similar role to the variance reduced gradient
estimator with batch-size b = mg, which leads to the algorithm requires less local gradient compu-
tation. Additionally, KNOT only computes the local gradient for all of the m agents when ('*1 =1
(line 19), which follows the idea of loopless framework for variance reduction [10} 24]. Since, we
draw ¢**! from Bernoulli distribution with parameter p, the small p leads to (‘T = 1 occurs infre-
quently and the computational cost for this case is not expensive in expectation. KNOT also enjoys
the parallel speed up property like Katyusha [[1]], which means to the appropriate settings for p and ¢
can reduce the number of total iterations that corresponds to less communication rounds in total.

3.3 Convergence Analysis

The convergence analysis of KNOT (Algorithm[2)) is based on the Lyapunov function [24] as follows

VEE ZE L YW (3.3)
where
ta LA+no) 2 N v * ¢ o 02 T
zZh= o |28 =", VY —el(f(y) f(¥)) and W _m@l( (W) = f(z"))

The parameters 7, o, 61, 02 in (3.3) follow the notations of Algorithm and we lety € (1/2,1).

The decentralized setting leads to we cannot directly follow the analysis of existing Katyusha-type
algorithms [T}, 10, 24]]. Different from previous work, the recursion on Lyapunov function V* for
KNOT contains the additional terms of consensus error, which is shown in the following lemma.

Lemma 1. Under Assumption![l} 2| Bland[] if we choose n = 1/(1301), Algorithm 2] holds that
1 0o
E [V*] <ma (71— (9 +0 —),1— 1— )Vt
[ ] < max 1+ 1 2 ~ »( )

2nLV'?

_ t gt 2
(1+7]U)m ||W 1w || .

e’ = 12| + ! = 2| +

3m2qb; 4m?2qb,

We consider the consensus error by introducing the vector

L

2 2 T
e | [ L e S N A E N (A T R P P

We describe the convergence of r; by a linear system as follows.

Lemma 2. Under the settings of Lemmal[l| we run Algorithm 2| by taking
o — | log(1/p)
1= (W)

03 1 1 0 1
[ (]9111(1111{277202, 3 <91 + 02 — j) ; ip(l ’Y)} :

with

Then it holds that
E [r”l] < p? (B At 4 et)
for some matrix A € R6¥S, elementary matrix B € R%%6 and vector et € RS satisfy

4 2
@7 ||B|| S 2 and HetH < T (Vt—i-l +Vt)

2The expressions of A, B and e; are very complicated and we present them in appendix.

Al <




151

152

153

154

156
157

159
160
161
162

163

164
165
166
167

168
169
170
171
172
173

174
175
176
177
178
179
180

181
182
183
184
185
186

By connecting above two lemmas, we obtain the main results.
Theorem 1 (main result). Under Assumption BlandH) we run Algorithm 2| with

() -l ) e ()

_ N !
92 — 2mqa 91 - mln{ Kp 02792}7 n= 1301

and take K by following the setting of Lemmal[2} Then it holds that

E [Vt] < (1 — min {na, b1+ 922_ 92/77 p(I;V) }) (Vo + ||I‘OH)

and

E {é It = th?} < (;T?ﬁ?*t) (1—min{na, 91+022_ 92/7,p(12_W)}> (VO [Ie]]) -

Theorem [T|establish the linear convergence for the function value at the point of mean vectors. The
Bernoulli variables in the algorithm indicate each iteration has O(m/+/k + /m ) local gradient
calls in expectation. Hence, we obtain the upper bounds of local gradient oracle complexity and
communication complexity for finding an e-suboptimal solution.

Corollary 2. Under the settings of Theorem [Z] Algorithm 2] can achieve an e-suboptimal solution
by taking T = O(y/k log(1/€)) and Kou, = O(+\/1/a), which requires the local first-order oracle

complexity of O ((m + /mr )log(1/€)) and the communication complexity of O(1/k/alog(1/e))
in expectation.

4 Discussion for the Optimality

In this section, we verify the optimality of the proposed algorithms. We first provide follow the
statement for the lower bounds of decentralized strongly convex optimization provided by Kovalev
et al. [[L1]], which is a direct application of Corollary 2 from Scaman et al. [29] but does not include
the dual gradient oracle.

Proposition 2. For any m > 2 and a > 1, there exist a gossip matrix W € R™*™ satisfying
1 — Xo(W) = « and a family of smooth strongly convex functions { f; : R — R}™ | with condition
number K such that the following holds: for any € > 0, any first-order decentralized algorithm
requires at least Q(\/k/alog(1/€)) communication rounds and at least Q(+/rklog(1/€)) gradient
steps to output X = [x1, ..., Ty " such that f(x;) — f(z*) < eforalli = 1,...,m, where x* is
the minimizer of f(z) = = > fi().

It is worth pointing out that the concept “gradient step” described in Proposition 2] only requires the
gradient computation should depend on the history local points of the corresponding agent, while it
does not contain any requirement on the number of agents that participate into their local gradients
computation. This implies the “gradient steps” lower bound of £2(y/xlog(1/€)) described in this
proposition corresponds to the iterations number of proposed KNOT (Algorithm [2), rather than the
number of local gradient calls. Hence, the result of Corollary |2l means KNOT matches the “gradient
steps” lower bound and nearly matches the communication lower bound provided by Proposition 2]

Compared with the number of “gradient steps”, we are more interested in the number of local gra-
dient calls, which essentially reflects the totally computational cost of a decentralized optimization
algorithm. The lower bound of local gradient calls can be established by considering the IFO calls
for the finite-sum optimization problem on single machine. Woodworth and Srebro [34] provide the
following lower bound for solving the finite-sum optimization problem by randomized first-order
(non-distributed) methods.
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Figure 1: Comparison for the number of local gradient calls vs. optimal gap.

Proposition 3. For any m > 2 and k > 161m, there exist a family of smooth strongly convex
functions { fz : R — R}™ | with condition number k such that the following holds: for any
€ > 0, any randomized algorithm require at least QX (m + \/mr log(1/€)) IFO calls to output x
such that B [f (&) — f(z*)] < €, where x* is the minimizer of f(z) = Ly fi(x).

We can view the individual functions { fi};’;l in Propositionas the local functions in decentralized
optimization on a fully connected network, then the IFO lower bound € (m + /mrlog(1/e€)) just
corresponds to the local gradient lower bound in our decentralized optimization problem. Hence,

Proposition [3]implies the local gradient oracle complexity of proposed KNOT is near optimal.

S Experiments

In this section, we provide the numerical experiments to evaluate the performance of proposed
KNOT. We consider the ¢5-regularized logistic regression for binary classification. We formulate
this model by the optimization problem
1 m
. A - i
min f(@) £ > fil@)

zERC

with

1 « "
filz) = . ;log (1 + exp (—bija;rjx)) + 5 ||$H27

where a;; € R is the feature vector of the j-th sample on agent i, b; ; € {—1,1} is the corresponding
label and p > 0 is the hyperparamter.

LEINNT3

We conduct our experiments on three real-world datasets “a9a”, “german.numer” and “australian”
which can be found in LIBSVM repository [2]. We let m = 300 and 1 = 0.01. We set the
gossip matrix W by corresponding a random graph that each pair in the network is connected with
probability 1/30, which leads to 1 — Az(W) ~ 0.0382.

We compare the proposed method KNOT with baseline algorithms ACC-GT+CA [13]], OPAPC [11]
and APM-C [15]. For KNOT, we set the parameters p, g, 01, 6> and n by following the settings of
Theorem |I|and tune K from {1, 5, 10}. For the baseline algorithms, we also select their parameters
by following the corresponding theoretical analysis.

We present the experimental results for the computational cost and communication cost in Figures|[I]
and 2| respectively, where the y-axis represents the optimal gap which is defined as

m

S @) - J(@).

=1

1
m
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Figure 2: Comparison for the number of communication rounds vs. optimal gap.

We observe that the proposed KNOT always has significantly better computational efficiency than
than all of baseline methods. For the communication complexity, the result of KNOT is comparable
to OPAPC and better than other baseline methods.

6 Conclusion

In this paper, we study decentralized strongly convex optimization and propose a novel method
called Katyusha-type Near-Optimal decenTralized algorithm (KNOT), which avoids computing all
of the local gradients in one iteration. The theoretical analysis shows that our method is near optimal
to both the local first-order oracle complexity and the communication complexity. The empirical
studies on regularized logistic regression problem also supports our theoretical results. We believe
the idea of KNOT is not limited to first-order optimization for convex problems. It is possible to
extend the framework of KNOT to solve variational inequalities. We can also try to design the
second-order decentralized algorithms with less local Hessian calls.
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The theoretical analysis of KNOT is organized as follows.

* We first consider the mean vector and provide the convergence of f(z') — f(z*). The result is
shown in Lemmal|[I] and its detailed proof is shown in Appendix

* We then consider the consensus error, which is characterized by vector

. L

t t2772t t2772 t )2 t )2 t )2 t e2] "
e Ll A I e e e e e N (e RN PR A H

The recursion of r; is established in Lemma [2| and its detailed proof is shown in Appendix

Especially, we present the expression of A, B and e; in the statement of Lemma|[T3]

* We finally apply Lemma [T] and [2] to obtain our final results Theorem [T]and Corollary [2} whose
detailed proofs are shown in Appendix [C|and [D|respectively.

A Proof of Lemma/(ll

In this section, we focus on analyzing Lyapunov function
‘/tézt_i_J)t_’_Vvt7
where
L(1+no) 2 1 .. 2
zta& o T E |7, VEE —(f(T) - fa* and W!2
el Gt 5. (F@) = @) i

The analysis is more complicated than the counterpart of L-Katyusha [[10, 24] because of the con-
sensus error aroused from the decentralized setting.

(f(@") = f(z7)).

We substitute ¢ = b/m in the following proof, where b can be regarded as expected mini-batch size.

Let us begin with a useful lemma of L-smooth and convex functions for our further analysis.
Lemma 3 ([22])). Under Assumption|[I|and|3] it holds that

o IV £i() ~ VRGP < £iw) ) — (V)@ — ), (A1)
forall i and x, y.

We show that the average of local gradient trackers can approximate V f(zt) well first.
Lemma 4. Under the settings of Lemmall| Algorithm[2|holds that

m

1 1 m
L —— ¢ E[s = =Y V/fi(xh).
5= EZ vy and [5°] - % fi(x;)

Furthermore, we have I
IV 5() - B < = - 1.

Proof. We have

V(@) —Es)* =




333

334

335

336

337

338
339
340

341

342

343

344

where the first equality is due to 5 = ¥ and

1 m
- = (gt
- — Z V fi(x})
i=1
hold for Algorithm 2] O

Then we provide some lemmas for the mean vectors.

Lemma 5. Under the settings of Lemmall} it holds that

E s~ VE)I?) <o

612 ]
o vt

(F(@") = f(@) = (V@) @' = 7)) + - [|x* =

Proof. We have

E[ls' - Vi@’ 1?]

Mg B mug%§)@wﬁupfvm@»fVﬂfwz
j=1

=E H*Z@(Vfg( §) = VW) —E[Vf(a) = Vfi(w))] + (E[s7] - V@)

j=1

QEDﬁMVLt@>—Vﬁu@»2}+2EMEBW—Vfuwnﬂ

:*E [IV£(z5) = V£ (w)) ] + 2E [I[E[s] = V f(z*))]]?]
6

S [Hm = VIE + VA = V@) + [V - V)]
+2E [|E[s'] - Vf(z"))I’]

@121 8L? 6L

Sng F@) = 1@ = (V@) o' —2) + T x — 12" + mig I 1 o'’
121 8L? 6L 2

=22 (f@) — @)~ (V@) 0t = 7) + [ = 1| 2wt~ 1|

where the first equality is because of the fact that a' = E [V fj(q:z)] and the first inequality is
because of the fact that E[||z — E[2]|?] < E[||z]|?] and the property of variance; the last inequality
is because of Lemma 4l

O

Lemma 6. Under the settings of Lemmal[l} we have

1
1+no

2 ZL (A3)

<St T _zt+1>_’_g”£,t_x*| >%H2t_zt+1||2+zt+l_

Proof. We start with the definition of z!*!

t41 Alg.P] ( t .t N t)
z 1+n0 noxr +z LS ,

which means

5t =no (i,t _ 2t+1) + (Et _ 2t+1).
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345 It further implies that

<§t7 FtH1 _ m*>

:u@t—zt“,zt“—x*)+%<2t—zt“,zt“—x*>
=5 (e = 27" = fl2* = =" = 12 - 2|
+m (I =2l = 12 = 2 2 =)
<l = I+ 5 (12 =" = o) [ =) = 55 12— 2
346 O
37 Lemma 7. Under the settings of Lemmall| we have
o (1) = 1) = g7 I8 = VAP < oo 2 = 20 + (2 = 21) . ad
a48  Proof. We have
% |24 = 2| + (5", 2 - 2
:%(%&W 2 - m“uimw“fﬂﬂ
B (- (s - ft>)
i (g 107 =4 (T, =) 4 (5= Va5 )
:%( 7" = 2| + (V). g it>+§< )H-t“ 2| + (5"~ v, gt - ;ﬂ)
E% (f(yt“)ff(ftHg(nz )Hzﬁ+1 2|+ (5" = v, g - @t>>
25 (167 - 16 = g2 I8 - 1)
5 (16 - 1) = g7 I8 - V@),

349 where the last inequality uses the Young’s inequality in the form of

lal® — B1o]* : 1t
by > — — th 5 =
(a.0) 2 =53 2 with B = T 0
350 and the last equality is because of the setting n = 1/(1361). O

st Lemma 8. Under the settings of Lemmal(l] we have

EW ] =1 -pW'+ %yt.

32 Proof. From Algorithm 2} we know that
E[f(@)] = (1= p) @) +pf ().

353 Then from the definition of W* and )¢, the lemma naturally holds. O
a5+ Using the above lemmas, we prove Lemma [T] as follows.
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355 Proof for Lemmall] Combining Lemmafd] [5] [6] [7]and [8] we obtain
Asm. 3]
F@t) ZRE) +(VEEe g + Bl -
=f@) + 5|z - +<Vf( N,z* — 2 42— ")
By @) 4 4 o' — o |+ (VA0 — )+ (VS @) " - )

+ 02020 gpat, ot - gt

1
2 + 2 (V5,2 - o) + L0 e - )

R[S = (e = ) (52 = 2] (V) — B

B+ 2 (vsa s )+ TS0 (6 g
t+1 gt ot 1 t L t t4+112
—HE{Z*—ﬁZ}—HEk * z>+%||z—z+“]
+(Vf(z") —E[s"],2* — 2')
1—6, —06y)

=) + 2 (Vi a - )+ (56 - 16

01
t+1 1 t 1 41 _t 1 —t —ty[|2
+E{g+ _mz} +]E[a (F@ = f(@") - S1L0, |5" = V@) }
+(Vf(z") —E[s"],2" — 2')

f(:f:t) + 0—2 ~(Vi@),a" —a') +

(1—6,—067)

(@)~ 1) +E [zm . ;Z}

1+no

+E {91 (f@" - f@") - zj (f(@") - f(&") — (Vf(z"),d" ~ @tw
+<Vf(a_c)—E[s x —z>—7|| t_ b ||W’f_1u—}t||2
=ty + S0 () ) - jnng - 2(@h - 1@)

+E |24 5 (16 - 1)

—t _ty %t L t —t||2 L t _t|2
+(Vf(@") - E[5'], 7Z>73m691 |x" —1z'|| = Db |w' — 12",
356 where in the second inequality we use the convexity of f(-). The procedure of the algorithm means

x* APl 012" + Oyw' + (1 — 61 — 02)y",
t_ ot Alzfl %(Xt wh) + 1—91—92(Xt_yt)_

zZ —X

357 Combining above results, we obtain

02

(@) = 1)

1
E [gt+1 +yz+1] < WZ (1-6,—60)Y"' + 2=

[w' — 1wt

_t t %t L + N2 L
(Vf(@")—E[],2" —2") + 3mbos Hx 1z Imbo
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sss  Using definition of WY, we get

E [ZH—I + yt+1] S#Zt T (1—0; — 92)yt +p’YWt

14+no
L
+||Vf@E) - z*—z ]|+3mb9 [x" — 12| + Tl [w' - 1a"|®
@ 1 t t ¢
Smg + (1 =61 —02)Y" +pyW
L _t)12
T | r Er oy ISy Sy RSP

ss9  Finally, we use Lemma|§|to achieve

E [Zt-‘rl +yt+1 +Wt+1]

t o . t t _ t 072 t
<1+mz (1 =01 = 02)YV" +pyW' + (1 —p)WV' + 73’
_ _ L _
+ |t - 12 I+ g I =10+ o [ = 2
o)
Hnaz < (91+02 7 Vit (I=p(l—=v)W
=t = 1) [l = 2+ g I = 10 + e o — v

t 62 t t

§1+mz +<1—<91+02—7)>y +(1-pQ—-9)W
_2pLVt _ L 412
e e = 18 g = 12 4 e w1

sso where the last inequality is obtained by the definition of V;.

%1 B Proof of Lemma

362 We first provide some lemmas to bound the consensus error.

se3 Lemma9. Letting

L

t t t 2 ty2 1
rt=—lllx -1z 1%, 5 llu’ — 12|

L et B R M T A U

a4 then under the settings of Lemmal[2} we have
E (x4 =127 <3p%67 2" — 12”4 30°03 ! - 1|
+3p%(1— 61 — 62)? [y — 157,
B [t - 10t ] <202 ot -1+ 20 g~
B s - 18] <22 ot = 15 2 oV

t ~t]|2
7 |12 — 17

t+1 St+1 3p*n’o® <t — 17t
B[l - 1] <28 [ - 16| + 30 s

~(1+4+no)

3p*n’
oy I8 -1

E [y =15 P] <80 x = 12*|" + 8063 [}2 ! — 127”4 35%63 |l2f — 12",

—t
I

365 where p > 0 is the parameter such that K = ———



s Lemma 10. Under the settings of Lemmal[2) it holds that

B [Jw' — 101] <6 lly — 19/ + (1 - p)
37 Proof. From Lemmall] we have that
E[[lwtt - 1004 *] <E [p? [+ - 1a0+ ]
MEB |y - 1|+ 20 - p)

368

39 Then we provide upper bound for ||gt*! — g?||? and ||vi*! — v¢|%
s70  Lemma 11. Under the settings of Lemma[2) it holds that
R
2
+ 42 ||wt — 1| + L”;mel W,
2
s71  Proof. We have
2
g —g'||” —ZHQM gl
<23 VAt - Vi) +2Z}|Vfl )= Vi)
i=1
a2 We can also obtain that
IV filwh) = Vi) |[* = [V filw!) = Vi) + Vi) VA i
<2 ||V fawh) = Vi (@")||* + 2|V fi(w) — V fi(a®)||?
2|, t]|? —t NIk
<2L7 ||wf — @'||” + 2 ||V fi(@") — V fi(a¥)||
Dr2 |ut — ot |? + 4L( (@) — fi(a")).
373 Combining above results, we achieve
e —g[|* <23 IV filwl™) = Vfile ~ Vi)
=1

Z4L2 Hwt+1 _ —t+1||2 +8L(f1-(1f)t+1) — fi(@)

Z4L2 [|wt —
1w+ |* + 8Lm(f(w+) —

— 10| + 8Lm(f(w") — f(z*))
8Lmpy6y

:4L2 ||wt+1 -

+4L7% ||w'

:4L2 Hwt+1 o

+4L7 ||w' —

374

@ ||” + 8L(fi(w") —

1t +

1|+

02
8me701

17

WtJrl

———— W

fi(z

2
||wt — 1wt|| .

")
f(@%)

_112
|w' — 12"




375

376

377

378

379

380

Next, we target to bound ||v* — 15t||

Lemma 12. Under the settings of Lemmal2} it holds that

Dol <3 ut = 1w |* 4 302 w' — a0t +

i=1

Proof. We have

t
ZHM

3

3

Z [3 [juf - a||* + 3]|a" - V5@

=1

N

@

<3’ -
R

=3ju’ — 1a@'||* + 3L7 ||o’ — 10| +

||u 1u

)
1utH +EZ

=1

Z 1V 5 (w))

Jj=1

=1 j=1

6 Lmpvy0:1

Z [(ui —a") + (@ = Vf(@") + (Vf(@") = V("))

13| Vi@

Z (Vfi(w) = V(@'

- V@)

¢
o w-.

Lemma 13. Under the settings of Lemmal2) it holds that

ZE

817mL01 Zt 8mLpy6,

sz

0= Vi

“(L+mno)q

Proof. We have

m

2 E

éz IV fi(at) — Y fi(wh)|?

2
LA
q

sz ;) = V fi(w)))

q2

2]

< 2 [I96H - vrG + v

Asm m4L

Asm ISmL

2
+ Ak -
q

il t
£

—(0:1(f(z

Sm. 2
A>§|I|4ms 6, HJ

412
_l’_ -

"~

t

17| +T(f(:r)—f(w*))+

-

1+

8mL

F@)) + 02(f (@"

L

8mL

7|+ — A+ 0)(f N~ flz

13+ 227 e -
q

1wf\|

w;))

(1+ )W +

— Vi)

8mL

q

)= f(=") +

18

T

2
12/ + 2= [’ - 1|

8mL91

|vf1(55 ) sz

. We first give two auxiliary lemmas.

6me’y€1 6Lmpy01 ),

V()]

+3 Z(QL(fz‘(ﬂ_)t) = fi(z"))

+3Z L(fi(@") — fi(z"))

1+ 2 55 S g P +322L fi@") — i)

———(1 -0y — 0))"

° + VA - V)]

(F(@) = ) + = w10

(1= 01— 02)(f(z") - f(z7)))

8mL
R

2
SL(f(m @) + % lw' — 10t

(1= 01— 02)(f(7") = f(z"))



8mLl6, _, 8mLpvy6:y :  8mLb +
= Z + 1+0)W + —(1 -6, -6
(1+mno)q q02 (1+62) q ( 1= 0y
4L72 417
+ = |x = 1@+ = [ - 10|
q q
381 O

2 Now we are ready to bound ||v! — 12°.
ss3 Lemma 14. Under the settings of Lemma 2| it holds that

B v+ -]

ALmp~y61 (4(1 +62) ) t+1 t 16npmLb1 141 t
< +3| (W +WH)+ ——— (2 +Z
<=, . ( ) i+ 77U)q( )

16mL91
4+ —

(1-6,— 92)(yt+1 +9
w6 = 1a )+ 5 127 (D) ot - 2|

2
46 Hut+1 _ 1ﬁt+1H + % HXtJrl _ 1jt+1H2 + 2L2 (% + 3) Hwt+1 _ 1wt+1H2-

21

ss4  Proof. It holds that
E[IV] =X E
=1

> E

i=1

Tk \

T

;. 2Lmpy0, < (1+69) n >Wt 8nmLo, St 8mLo, (1= 0, — 63))"
0 (1 +n0)q q
2
13 fut - 1|+ 2 et - 1| 1 1 (;‘ + 3) Wt — 13|
ses  Then we use the fact that [|v!* — vt||2 < 2||viHt ||2 +2|[v!||*, we can obtain the resul. O

ass  Substituting the result of Lemma [IT]and Lemma [T4]into Lemma[9] we obtain Lemma[2] Here, we
g7 rewrite the result of Lemmaby taking ¢ = b/m, which contains the detailed expressions of A, B
ass and e’

Lemma 15 (The complete version of Lemmal[2). Let

I

vt = Lt — 122, 1t — 102, L (st — 152, 1t — 12102, Wt — 12, y* — 11T
- m 7L2 ’LQ b b b y y

8o Under the settings of Lemmal[l} we run Algorithm[2] by taking
[ 1og(1/p)
1= (W)
@ (145451 6\ 1
< 71 Z Z _Z= Z _
Py mln{2n TAGREE S s 5P(L=7) 1,

]E[’I"t—‘rl] SpQ (B'A'Tt+€t),

390 with

391 then we have
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392 where we define matrix A, elementary matrix B and vector ¢* as

[ 0 0 0 0 0 0
0 2 0 0 8*(1+p*(1 —p)) 8n°p°p
asy 12(1 + 2p%) 2 a34 ass ase
A= Ry 3 3 ,
THio)? 0 o? (o 0 0
0 0 0 0 1-p P
9p29rf77202 9p29f 2 9p202
e 0 oz 301+ T 0 0
393
1 0 0 3p%02 3p%02 3p%(1— 06, — 03)?
01 0 0 0 0
0 0 1 0 0 0
B = 0 0 O 1 0 0
0 0 O 0 1 0
0 0 O 0 0 1
394 and
0

2
16n9§'\/91 (WtJrl + Wt)

ot — i’grfjgl;g (Zt + Zt+1) + 87;2;;2791 (4m(1b+92) 434 48p2)(Wt + Wt+l) + 327]3b91m(1 —f — 92)(yt + yt+1)
0

0
0

395  where
16n%m n?c%60?

ag = — <1+9p4 |:(1+770)2+(1—91—02)2:|>,

144n2p*m 03 9 9
1—6 —
ass b (14 no)? +07(1 =01 —02)° |,

o 16772m 2 42 2 2 2
ags = —p— [L+p"(1 =p) +90"05(1 = p)] + 120" (1 + 80°) (1 + p°(1 = p)),

4m
ase = 4n’p°p [b(l +3p%603) +3(1 + 802)} :

se6  to simplify our equation. Then we can do a simple estimation with substituting n = 1/(1361) to
397 obtain that

4m

dm 2m.
b62’

A

IBl| <2 and ||| < (VI v,

sss C Proof of Theorem /(I

399 Combining Lemmal(I|and[2] we have got what we need to prove our main theorem.

400 Proof for Theorenfl] We prove the theorem by induction. By LemmalT] the theorem holds for ¢t = 1.
401 Now, we assume that

t

E[V'] < [ max (1 —no, 1 — % (91 + 6y — 9’:) 11— %p(l — 7)) (VO+ ). €1

e
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02 holds when ¢ < k and are going to prove it holds for t = k + 1. We use the notation A, B and e? by
a3 following Lemma[2](Section B). By the definition of V* and Lemmal[15] we can obtain that

E [f[*]
9 2 k . 7
ggpbaT S AN TV VY + (202 1Al )
=1
2 2 k —i 4
ggpb@T @A IAD" o o+ DO+ 0] + (207 AL (|0
i=1
(C.2)
2t l) (9Y5 5 () iy 4 ) + 207 Al 1|
- 3bhia

i=1

2°m(a+1) sa\k i
= (5) @ =20+ [+ (20 1A )

8p*m k
< (gt 1A )
1

s04  where the second inequality is because the condition for p in Theorem [1|implies p? < /(4 ||A]))
405 when n = 1/(1301) and we assume that for all i < k, E [V'] < o/(V? 4 ||?||). Furthermore, we
406 can obtain

L

t —t|2
HX -1z H + 4mbb,

L t —t |2
E [3mwl Wt — 10| }

*11] (C.3)

1 [/8p*m ,_ .
=308, ( T (20 Al ) (VO Il

407 and

2nLV?t
A+ no)m "~ 1"’Ct”}

<V 2nVt/E|rk|| (C.4)
8p%m
g\/mw\/ (St + 1A ) - (7o 4 o))
1

408 Furthermore, if we denote that

1 62
B = max (1 e <91 + 0, 7) 1 =p( ’Y)) ;

409 Wwe have

E [VFH]
<BV*+ Giﬂ\!x S el e v e ng [wh — 1ot
<ot (04 10 (54 g (Soita + (27 1Al a™)")
+ \/ 2 (s 1)) €3

1 (16p>m  [16p>m\"
< k 0 0
st (Vi ”)<5+ 300, ( 306 +< o
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410
411
412
413
414

415

416

417
418

419

420

421
422

.
27 8p*m _q/9 16p%m\ 2
2 C6
T\ 30 ( 32 ¢ T\ T2 o
. 1 16m  16m 2n 8m 16m
<ok (V0 0 2 \/7 2
<ot VR 2+ g5 \3og2 502 ) 7\ 300, \ 2\ 3002 T\ 2 ) °
64m 2\ [2 m
k 0 0 2 —_—
_ Pral144/2 )=
" (VE + [|Ir7]]) <5+ 91263 " T ( + \/;) 39 b6? p)

1 ) Im
<a® (VO + |7°]]) (max (1-1-770’ 1- (91 + 6 — j) e '7)> - bgﬁ’)p>

<a® (VO [r])),

where the last inequality is because of the condition of p in Theorem[T} The first inequality is because

of Lemma(I} Inequality (C.5) is because of the equation (C.I),(C.3) and (C.4) and inequality (C.6)

is because of @ > 1/2 and ||A|| < (4m)/(b6?). Thus, the theorem also holds for ¢t = k + 1 and we
complete the proof by induction. Furthermore, Equation [C.2]and condition of p in Theorem [I)imply
that p? < a/(4||Al|). Then we obtain

B || - 10|

m

8 1 02 1 '
< (%3 +2_t> max (1 —no,1— 3 (91 + 0y — ’7) ;1 — 517(1 _7)> : (V0+ HrOH)'

O

D Proof of Corollary 2]

Proof. We first prove that KNOT (Algorithm [2) can find an e-suboptimal solution in expectation.
We run KNOT with the setting of Theorem|[T]and let

1 2 2 1
T=0 — + + log - | .
((770 (91+92*072) p(17)> g6>

Then Theorem [[lmeans

gE [||5T_x* E[f(@") — f(z)] <

<5 EFEH-fa <3 <

and E [Hx,T — :ETHﬂ < me/L foreachi =1,...,m. From Assumptionandwe obtain that
E[f(@") — f(z")]
<OE [f(2") = f(@")] + 6:E [f(@") = f(@*)] + (1= 61 = 62)E [f(5") — f(")]
g%LE [HzT - x*\ﬂ +OE[f(@") = f(@)] + (1~ 6 —6)E[f(y7) — fz")]
3(01+92+(1—91—02))6:6.

(D.1)

Moreover, Proposition |I{means step Xout = AccGossip(xr, Kout) with Koy = O(\ /1/alog m)
(line 23 of Algorithm [2) leads to z°"* = 27 and

LE |[lag — 2|*] < (D.2)

£
3
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431

432
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434

for each i = 1,...,m. Applying the smoothness of f (Assumption[I)) and Young’s inequality, we
have

L
f(l‘;-)ut) _ f(jout) <Vf( out) ;)ut _ i,out> + 5 ||x;_)ut _ EOUtH2

c —=ou 1 L ou —ou
<E s+ - L g — g2

forany ¢ = 1,...,m and any ¢ > 0. Additionally, Lemma@implies

||x(;ut _ —out”2

FE) = f@) = = ||V

= 2L

Combing above two results with ¢ = 1/(2L), we have

E [f(x;)ut) —f( )] <cLE [f( out) —f(x*)] + (1 + L) |:onut ‘fout||2:|

2¢ 2
<€ + 3 €
— — . — =€
-2 2 3
forany ¢ = 1,...,m. This implies the output z°"* is an e-suboptimal solution in expectation.

Then we analyze the complexity of KNOT by following the parameter settings of Theorem [I]
Case 1: In the case of m < k, we choose b = /m and p = 1/y/m. Thus,

. [b [ b 1
01 = mln{ /§p92’02} = ?p02 = m

By choosingy =1 — o ¢ (2/3,1), we have
2 2 4
= < — =2k
1 —_ k)
01 +92—7 91(1—5) 01

which means

1 2 2 13 4 1
+ + < +4+ OWk).
o1 +0— % p(1-7) (2 )91 (V)

Case 2: In the case of m > &, we choose b = /k and p = 1//k. Thus

. [ b 1
91m1n{ ’weg,az}ggm.

By choosing v € (2/3,1), we have

1 2 2 13 4 1
—+ + <(Ziar ) L oowsm)
91-&-92—* p(1—7) < ) (Vr)

Therefore, the number of iterations for KNOT to achieve an expected e-suboptimal solution is

_o <\/Elog 1) .

Thus, the expected first-order oracle complexity is

T~(b+mp)=0((m+m)10g1>7
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436 and the expected communication complexity is

T.K:O<ﬁlog<mm>log1>_
1—/\2(W) €

437
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